
The RF Line Microwave Power Transistors

Designed primarily for large–signal output and driver amplifier stages in the 1.0 to 2.3 GHz frequency range.

- Designed for Class B or C, Common Base Power Amplifiers
- Specified 28 Volt, 2.0 GHz Characteristics: Output Power — 1.0 to 20 Watts Power Gain — 5.2 to 9.0 dB, Min Collector Efficiency — 40%, Min
- · Gold Metallization for Improved Reliability
- · Diffused Ballast Resistors
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRW2001 MRW2003

5.2-9.0 dB 1.0-2.3 GHz 1.0-20 W MICROWAVE POWER TRANSISTORS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Base Voltage	VCES	50	Vdc
Emitter-Base Voltage	V _{EBO}	3.5	Vdc
Collector Current — Continuous MRW2001 MRW2003	lc	0.25 0.5	Adc
Operating Junction Temperature	TJ	200	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, RF, Junction to Case MRW2001 MRW2003	R _θ JC	25 15	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Іур	Max	Unit
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage		V(BR)CES				Vdc
$(I_C = 10 \text{ mA}, V_{BE} = 0)$	MRW2001	` ′	50	_	_	
$(I_C = 20 \text{ mA}, V_{BE} = 0)$	MRW2003		50	_	_	

(continued)

ELECTRICAL CHARACTERISTICS — **continued** ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (continued)						
Emitter–Base Breakdown Voltage ($I_E = 0.2 \text{ mA}, I_C = 0$) ($I_E = 0.25 \text{ mA}, I_C = 0$)	MRW2001 MRW2003	V _{(BR)EBO}	3.5 3.5	_ _	_ _	Vdc
Collector Cutoff Current (VCB = 28 V, IE = 0)	MRW2001 MRW2003	ICBO	_ _		0.5 0.5	mAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 100 mA, V _{CE} = 5.0 V) (I _C = 100 mA, V _{CE} = 5.0 V)	MRW2001 MRW2003	hFE	10 10		120 100	_
DYNAMIC CHARACTERISTICS						
Output Capacitance (V _{CB} = 28 V, I _E = 0, f = 1.0 MHz)	MRW2001 MRW2003	C _{ob}	_ _	_ _	4.0 5.0	pF
FUNCTIONAL TESTS						
Common–Base Amplifier Power Gain (V _{CE} = 28 V, P _{OUt} = 1.0 W, f = 2.0 GHz)	MRW2001	G _{PB}	9.0	_	_	dB
Common–Base Amplifier Power Gain (V _{CE} = 28 V, P _{out} = 3.0 W, f = 2.0 GHz)	MRW2003	G _{PB}	8.0	_	_	dB
Collector Efficiency (VCE = 28 V, P _{out} = 1.0 W, f = 2.0 GHz) (VCE = 28 V, P _{out} = 3.0 W, f = 2.0 GHz)	MRW2001 MRW2003	η	40	_	_	%
Load Mismatch (VCE = 28 V, f = 2.0 GHz, Load VSWR = ∞ :1, All Pout = 1.0 W Pout = 3.0 W	Phase Angles) MRW2001 MRW2003	Ψ	No Degradation in Output Power			
Saturated Output Power (VCE = 28 V, f = 2.3 GHz) (VCE = 28 V, f = 1.5 GHz) (VCE = 28 V, f = 1.0 GHz)	MRW2001	P _{sat1} P _{sat2} P _{sat3}	_ _ _	1.0 1.2 1.3	_ _ _	W
(V _{CE} = 28 V, f = 2.3 GHz) (V _{CE} = 28 V, f = 1.5 GHz) (V _{CE} = 28 V, f = 1.0 GHz)	MRW2003		_ _ _	3.0 3.7 4.0	_ _ _	

TYPICAL CHARACTERISTICS

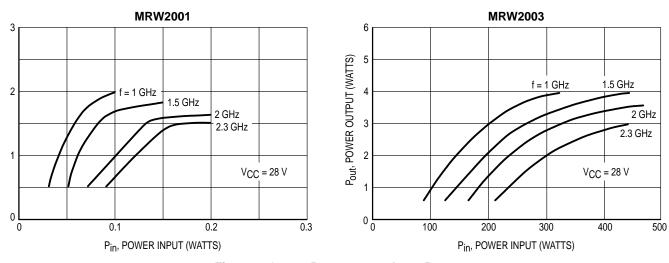


Figure 1. Output Power versus Input Power

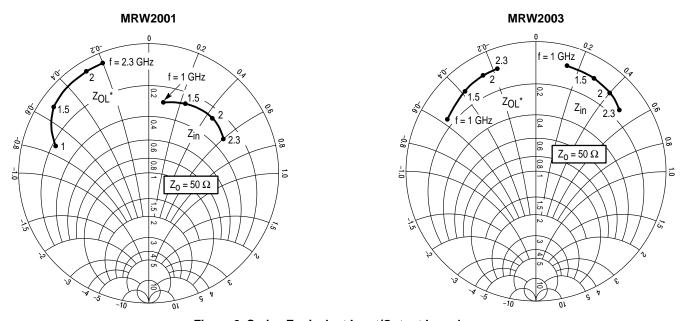


Figure 2. Series Equivalent Input/Output Impedance $V_{CC} = 28 \text{ V}$

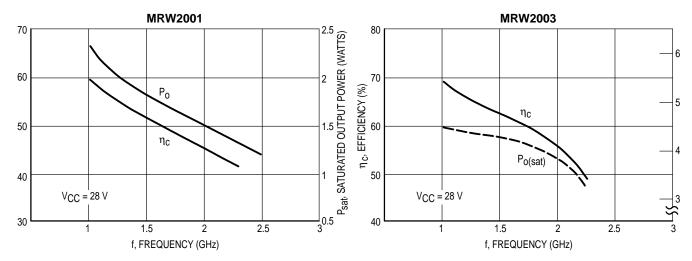


Figure 3. Power Output and Efficiency versus Frequency

The graph shown below displays MTTF in hours x ampere² emitter current for each of the "Super 2.0 GHz" devices. Life tests at elevated temperatures have correlated to better than $\pm 10\%$ to the theoretical prediction for metal failure. Sample MTTF calculations based on operating conditions are included on the graph.

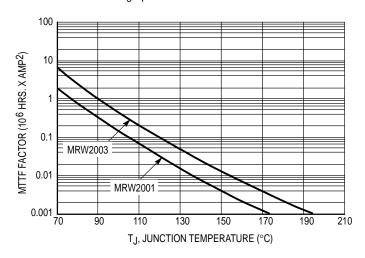


Figure 4. MTTF Factor

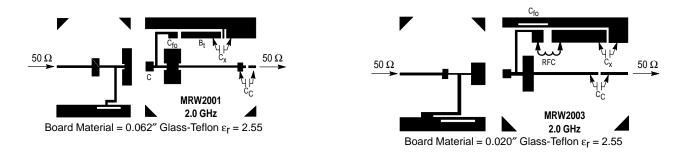
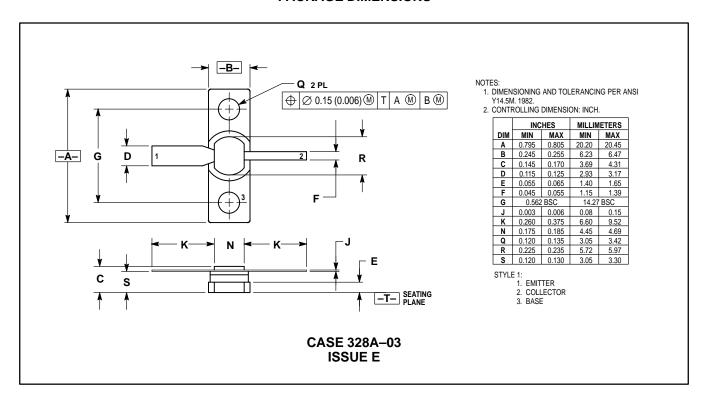



Figure 5. PC Board Layouts

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and was negligent regarding the design or manufacture of the part. Motorola and Parameters in a place of the part. Motorola and Parameters in a provided in Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 – US & Canada ONLY 1–800–774–1848

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi-Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488

Mfax is a trademark of Motorola, Inc.

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

INTERNET: http://motorola.com/sps

MRW2001/D